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Abstract 

This paper describes the adaptation of a finite element program with 

explicit time integration to a massively parallel SIMD computer, the 

CONNECTION Machine. The adaptation required the development of a new 

algorithm, called the exchange algorithm, in which all nodal variables are 

allocated to the element with an exchange of nodal forces at each time step. 

The architectural and C* programming language features of the CONNECTION 

Machine are also summarized. Various alternate data structures and associated 

algorithms for nonlinear finite element analysis are discussed and compared. 

Results are presented which demonstrate that the CONNECTION Machine is capable 

of outperforming the CRAY XMP/14. 

1. INTRODUCTION 

This paper describes a data management scheme and an associated algorithm 

for highly parallel (on the order of lo3 processors) computers with local 

memory for nonlinear finite element analysis. The algorithms are either 

explicit or iterative implicit. The salient feature of this method is the 

allocation of all nodal variables to the element and an exchange of nodal 

forces at each time step in the procedure to maintain compatibility between 

elements. This algorithm has proven highly efficient on the CONNECTION 

machine. For a 16 K processor model, the speed of the CRAY X-MP/14 is 

exceeded by a factor of 3 for meshes consisting of 16 K elements. Even 

greater gains in speed are anticipated for larger meshes running on larger 

versions of the CONNECTION machine. The largest version of the CONNECTION 

machine has 65,536 (64 K )  processors. 

The development of the CONNECTION machine is a manifestation of 

aggressive competition to attain speedups in the computer design community. 
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It is widely acknowledged that the computational performance enhancements of a 

computer based on a Von Neumann architecture, i.e. single-instruction single- 

data (SISD) are approaching an asymptote due to the material limitations of 

the underlying hardware. Thus increasing attention has been devoted to 

alternate computer architectures falling under the three broad categories, 

first described by Flynn [6] in 1966 and summarized by Desrouchers [5]: 

1. SIMD - single instruction multiple data. All processors execute the 

same instruction, however each processor uses its own data. 

2. MISD - multiple instruction single data. Each processor has a unique 

instruction stream which operates on the same data stream. 

3. MIMD -multiple instruction multiple data. Each processor has its 

own independent instruction and data streams. In general, 

processors are operating asynchronously and communication 

between processors is minimal. 

Each of these alternate architectures requires a change in the way a 

programmer formulates his algorithm and develops the underlying code. The 

programmer must establish a sensitivity to the computer architecture he is 

working with to a degree unprecedented in the SISD era. An efficient and 

effective algorithm exploits the strengths of the underlying computer 

architecture while de-emphasizing its weaknesses. 

The CONNECTION machine consists of up to 64 K processors, each processor 

is able to communicate with any other, hence the name "CONNECTION" machine. 

For massively parallel machines, the SIMD architecture with processor 

allocated memory is the most natural of the three alternate architectures. 

The programming model is to think of the processors as representing, for 

example, a collection of particles. Now given the task o f  calculating the 

state of each element, instead of using the SISD approach of looping over all 
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the particles one issues single instructions which are performed simultane- 

ously by all the processors. This is an extremely natural way of performing 

the same set of instructions for each "element" in parallel. 

While SIMD programming is initially easy to learn, to gain real 

performance requires experimentation. The general trends observed while 

implementing finite element algorithms on the CONNECTION Machine will be 

presented in subsequent sections. 

A SIMD programming environment is reminiscent of vectorization with the 

exception that vectorization employs shared memory. Coarse grained SIMD 

parallelism with shared memory typically entails a distribution of data across 

a few processors in much the same way data is distributed across the registers 

of a vector processor. Shared memory simplifies the adaptation of algorithms 

designed for a Von Neumann architecture substantially. With a partitioned 

memory and fine grained parallelism the difficulties are much greater. 

Partitioned memory demands efficient data management which often results in a 

complete redesign of the algorithm. Where a sequential computer would have 

one processor do 8000 iterations of a loop, a coarse grained SIMD parallel 

(vector) computer with, for example, 8 processors (registers) will execute 

1000 interations of the loop on each processor (register), and a fine grained 

(massively parallel) will execute the body of the loop once on each processor. 

The differences in architecture also manifest themselves in the 

appearance of the final code. Code adaptation for a vector computer places a 

heavy emphasis on efficient GATHER-ASSEMBLE and eliminating nested inner loops 

by rep1 ication. This frequently obfuscates the underlying physics behind the 

computation. On the other hand, in a massively parallel partitioned memory 

environment state variables such as area are transformed from arrays in a SISD 

environment to scalars across the 'Iwidth" of the computer. Inner loops remain 
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intact while outermost loops are replaced by a selection statement signaling 

that the subsequent body of code is to be executed in parallel. This 

inevitably results in a more readable code. 

Para1 le1 implementations have been considered by several investigators. 

Nour-Omid and Park [2] have reported on the implementation of implicit solvers 

on Hypercube MIMD machines with large partitioned memories. Belytschko and 

Gilbertsen [ 101 have described the implementation of explicit time integration 

with subcycling in a MIMD computer with shared memory. Neither of these 

implementations required the extent of restructuring of the algorithm and data 

structure as in a massively parallel SIMD partitioned architecture. 

In this paper, the algorithm and data structure for dynamic nonlinear 

finite element analysis based on explicit time integration is described. A 

complete redesign which favors redundant calculations over the assembly of the 

global force vector from the element nodal force vectors (ASSEMBLE) was 

necessary. We will describe the redesigned algorithm and data structure in 

the context of one-dimensional and two-dimensional problems, a1 though the 

three dimensional problem is most appropriate. 

An outline of the paper is as follows. In Section 2, the CONNECTION 

machine architecture is described in greater detail. The focus i s  on 

hypercube topology and interprocessor communication. Section 3 describes the 

governing equations for finite element analysis and a comparison between their 

implementation on the Von Neumann and SIMD computers. Several CONNECTION 

Machine finite element algorithm prototypes are discussed. Section 4 

describes the Cf programming language for the CONNECTION Machine. Coding 

examples for the one dimensional problem are presented. Section 5 compares 

the performance of the CONNECTION Machine to the CRAY XMP/14 one of the most 

powerful SISD machines available. Section 6 summarizes and draws conclusions 

from all tests performed. 
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2. CONNECTION MACHINE ARCHITECTURE 

The CONNECTION machine system consists of a front end computer, a 

parallel processing unit consisting of 16 K to 64 K data processors, each with 

a local memory, and (optionally) an 1/0 system that supports mass storage and 

graphics display devices. The front end computer is a conventional SISD 

computer which implements a standard operating system and extended versions of 

standard programming languages to facilitate code development. Programs 

developed for the CONNECTION machine are similar to programs developed for 

SISD machines with the exception that loops over the number of elements or the 

number of nodes in a finite element model are replaced by single commands 

activating many processors in the CONNECTION machine to simultaneously perform 

calculations on data residing within their local memories. 

The parallel processing unit is an extension of the front end. One can 

think of the CM as intelligent memory. All code resides in the front end 

computer. The CM compliers translate serial code directly to the native 

assembly language of the front end while parallel code is translated to a mix 

of native assembly code and a special instruction set called PARIS (parallel 

- instruction set). The PARIS calls result in operations addressing the front 

end bus interface which allows communication with the CONNECTION machine. In 

other words, upon encountering a parallel statement, the front end dictates 

the command to all activated processors. The fundamental building block of 

the parallel processing unit is an integrated circuit consisting of 16 

processors and a routing device for interprocessor communication among 

processors located on different chips. Each processor has 64 K bits of 

memory. In addition, each pair of chips has an optional floating point 

accelerator. Taking advantage of the floating point accelerator requires no 

change in user software. 
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Each algorithm requires its own pattern of communication and hence each 

processor may need to communicate with any other. The construction of a 

direct connection between every pair of processors is impractical since a 64 K 

CONNECTION machine would require over 2 billion wires. Among the grid based 

processor interconnection schemes, the hypercube topology offers several 

distinct advantages. A single 16 processor chip can be thought of as a "zero- 

cube". Connecting two zero-cubes with a single wire yields a "one-cube". 

Connecting two 'one-cubes" at their corresponding vertices yields a Y w o -  

cube". Repeating this process yields a "twelve-cube' with 212 (4096) 

vertices. With 16 processors per vertex, a twelve cube can arrange 65,536 

(64 K) processors with no processor more than 12 wires away. 

It is important to note that in the description of the Boolean n-cube, 

each successive n-cube was established by linking the corresponding vertices 

of the previous cube. Therefore, each cube in an n-cube has two subcubes. A 

twelve cube is built up from two ll-cubes. Each ll-cube consists of two 10 

cubes. This arrangement is in harmony with the binary logic of a computer as 

each subcube may be designated as either 0 or 1. Thus, each vertex of a 12- 

cube can be assigned a unique 12 bit address. Each message in the CONNECTION 

machine consists o f  an address and either data or an instruction. Messages 

are passed between routing devices which process the address field one bit at 

a time. There are many paths between any two processors; should some of them 

be blocked by other messages passing through the CONNECTION machine, the 

router may choose an alternate free path by simply processing the bits of the 

address in a different order. 

Figure 1 illustrates two alternate routes between chips located on two 

The three-cube may be viewed as consisting of three 

That is, a pair of x planes, a pair of y planes, and a pair 

vertices o f  a three-cube. 

pairs o f  planes. 
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of z planes. Each plane within a pair is designated as 0 or 1. Thus each 

vertex of a three-cube can be assigned a unique binary address whose bits are 

determined by which member of each pair of planes it lies on. 

In Figure la, a message is passed from 000 to 111. The router reads the 

first bit and sends the message to 100. There, the router reads the second 

bit and sends the message to 110. Finally the router reads the third bit and 

sends the message to its destination. Figure lb illustrates the hypothetical 

situation where the router must select an alternate route between 000 and 

111. At step one, the router has read the first bit of the destination 

address and has determined that the wire connecting 000 and 100 is already 

occupied by a transmission in progress. The router may then simply process 

the second bit first, sending the message to 010. The router then processes 

the first bit which results in the message being sent to 110. Finally the 

router processes the third bit and sends the message to is destination. 

The same principle applies to the 12-cube of the CONNECTION Machine. 

Each vertex in the 12 cube has a unique address specified by a string of 12 

bits. The first bit specifies which of the 11-cubes within the 12-cube 

contains the desired point. The second bit specifies which o f  the 10-cubes 

w i t h i n  t h e  11 cube contains the desi red p o i n t  and so on until the  twelfth b i t  

specifies which of the 0-cubes within the appropriate 1-cube is the desired 

vertex. 

The above form of communication is called router communication and 

derives its name from the mechanism employed to pass messages between any two 

processors. A second mechanism for interprocessor communication which i s  much 

less general but, as will be subsequently shown, faster, is NEWS communi- 

cation. The NEWS communication scheme establishes a PARIS instruction set 

through which the processors may be organized into an n-dimensional grid by 
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the programmer and every processor is allowed to send data to its immediate 

neighbors in the grid. n can be any integer between 1 and 31 (inclusive), and 

the size of a dimension must be a power of 2. NEWS interprocessor communi- 

cation derives its name from the initials of the four principle directions: 

North, East, West, and South. This type of communication is only applicable 

to structured finite element meshes. The node spacing need not be regular but 

the element topology must be regular with at most 8 nearest neighbors. Meshes 

generated by quadtree and octree methods fit these criteria. 

3. QUADRILATERAL PLANE STRESS CONTINUUM ELEMENT 

A four node isoparametric quadrilateral element was implemented to design 

the algorithm and benchmark the performance of the CONNECTION Machine in the 

solution, for the displacement field u - -  (x ,  t), of the following initial value- 

boundary value problem. 

equation of motion: gT .. + = p i  (1) 

strain-displacement: E = D - -  u in n (2) 

stress-strain law: .. = = 2 ( 5 )  (3)  

boundary cond i ti ons 

prescr 

prescr 

- 
bed displacement: 

bed traction: 

u = u on ru 

o n =  T on rT 

rut! r = r  

run rT = 4 

- "  - - -  
T 

i ni ti a1 condi ti ons 

initial displacement: u, ( 5 ,  0) = 9 0  

initial velocity: 4 ( 5 ,  0) = i o  

where , 
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= { = displacements, which are the unknowns 

a 
ax 

t denotes time 

n denotes a unit normal to a ." 
A superimposed dot denotes differential with respect to time. 

For a liner isotropic material, (3) is replaced by 

z = c o  I . d  

C =  - E 
1 - v  

2 

1 
V i 0 V 

1 

0 1-v - 
2 :I 

C is the constitutive matrix which for the case of isotropic linear elastic 

materials is determined solely by the two elastic constants E (Young's modulus 

or elastic modulus) and u (Poisson's ratio). 

- 
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In the finite element method the unknown, which is the displacement 

field u (x, t), is interpolated by element shape functions N in the form * *  ” 

where ye are the nodal displacements of the element. For the four-node 

quadrilateral which will be used here 

!e = [!} 
Each node of a 2D continuum element has two degrees o f  freedom. 

The relationship between the element nodal displacement vector and the 

global nodal displacement is given by 

where Le is a Boolean connectivity matrix for element e which maps global 

nodal quantities to local nodal quantities. This matrix is never actually 

constructed in finite element analysis. The information it contains i s  

instead stored in an element connectivity array, IX(1,JE). IX(I,JE), I = 1,4 

gives the global node numbers of element JE. The operation of extracting the 
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element nodal displacements from the global array, Eq. (14), is called the 

GATHER operation. 

Performing a finite element semidiscretization on the initial value- 

boundary value problem, Eqs. (1) to (4) yields a system of ordinary differ- 

ential equations in time (see Belytschko (1983)). 

I = 1 to nn - M I  !!I - f I  

where nn is the number of nodes in the mesh. The nodal forces are given by 

T f = c Le fe 
e 

ext int f = f  - f e  -e -e 

i nt 
fe = 8 BT u " dn 

'e 

fext = 8 NT b dn + 8 -e - I  - . u  
NT T* da 

e 'e rT 

Me = 8 p NT N dn - -  
'e 

The mass matrix calculated in accordance with equation (16f) is called a 

consistent mass matrix. The lumped mass matrix is evaluated by adding all the 

terms in a row of the consistent mass matrix and placing the sum on the 

diagonal. Thus matrix inversion for the solution of (15) becomes trivial. 
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We have written Eq. (15) in a nodal form, so that fI are the nodal forces 

fe is the nodal force matrix for an element, which in the case of 
.. 

at node 1. 

a four-node quadrilateral is an 8 row column matrix. 

The operation indicated by Eq. (16a) consists of using the IX array to 

add the nodal forces into their appropriate locations; this is called an 

ASSEMBLE operation. 

The internal nodal forces, Eq. (16c), are evaluated by one point Gaussian 

quadrature with stabilization, see Belytschko, et al. [91. The equations (15) 

are integrated in time by the central difference explicit method. As can be 

seen from Table 1, the Von Neumann algorithm i s  naturally partitioned into an 

element portion and a node portion. The allocation of data within arrays, as 

depicted in Figure 2a, reflects the partitioning of the algorithm: element- 

type arrays store the stresses, strains, and other state variables at all of 

the elements in sequence; whereas node-type arrays store the displacements, 

velocities, accelerations, and nodal state variables in sequence. The 

interrelationship between element and nodal variables i s  implemented by the 

GATHER and ASSEMBLE operations. The GATHER operation is not easily vectorized 

or implemented in a SIMD computer, see Flanagan [ll]. These operations are 

controlled by the element-node data which determine the Le matrices in Eqs. 14 
and 169. The interrelationship of the data on a Von Neumann Machine is shown 

in Figure 2a. It is readily observed from Table 1 and Figure 2a that the 

nodal and element data are completely separate, and are only connected by the 

GATHER-ASSEMBLE operations. 
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1. 

2. 

3. 

Table 1. Flowchart for Explicit Integration in Von Neumann Computer 

Initial conditions: ~ ( 0 )  = uo; y - ( -  T )  At = u - 0  

Loop over elements: e = 1 to ne 

a. GATHER ue from u, Eq. (14) 

b. Evaluate strains: 5 - - B u  - -e 
c. Evaluate stress: = (5) 

d. 

.. 

Compute internal and external forces, fe by Eq. (16c) and (16d) 

ASSEMBLE fe into f, Eq. (16a) e. 

end loop over elements 

Loop over nodes: I = 1 to n 

- 

C. U;+' = l~; + At j 111 j+1/2 
-, 

end loop over nodes 

4. t + t + a t ;  j +  j + l ; g o t o 2  
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The SIMD algorithm and associated data structures developed here are 

shown in Table 2 and Figure 2b, respectively. As can be seen, the GATHER- 

ASSEMBLE operations are absent. Instead, an EXCHANGE of information in the 

form of the nodal forces occurs at each time step. The nodal velocities and 

displacements are stored for each element and are integrated as part of the 

element calculation. This approach requires extra storage and computations 

because most nodes, for the four node quadrilateral, are shared by four 

elements; however, the reduction in communication makes this approach work 

best. Furthermore, this approach is naturally congruent with the 

architecture o f  CONNECTION type machines. In these machines, the storage per 

is 

1 1  

te 

processor easily accommodates the extra nodal variables. Furthermore, it 

most important to make the calculations in all processors identical. As w 

be subsequently shown, separate element and nodal data bases were qu 

ineffective. 

Explicit time integration requires a sufficiently small time step 

prevent numerical instabilities, which could 

from occurring. A linearized analysis of 

reveals that, for an undamped system, the stab 

2 
max 

At I - w 

to 

render the results worthless, 

the central difference method 

e time step bound is given by: 

where wmax is the highest frequency of the system. The frequency 

corresponds to the maximum eigenvalue of the equation: 

where (K] is the global stiffness matrix and [MI is the global mass matrix. 
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Table 2. Flowchart for Explicit Integration in SIMD Computer 

1. Initial conditions: uo = y(0); i-'I2 = i ( 0 ) ;  .. 
j = t = 0; initialize elements 

2. Do elements computations in parallel: e = 1 to ne 

a. Evaluate strain: E = B u - ..e 

b. Evaluate stresses: = 2 (E) 

c. Compute element forces: fe by Eq. (16c) and (16d) 

EXCHANGE fe " 

- - j-1/2 + Atj-1/2 -* 

e. ye - u, ye 

end element computations 

3. t + t + A t ;  j +  j + l ; g o t o 2  
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The task of determining the stable time step bound can be cast into a 

form more amenable to the massively parallel SIMD architecture of the 

CONNECTION Machine. 

Rayleigh's theorem bounds the maximum frequency of the system by the 

maximum frequency among all the elements of the system (see Flanagan and 

Belytschko [ 131). 

w I Maximum ( w ~ ~ ~ ) ~  
for all e 

max 

Furthermore, solution of the corresponding eigenvalue problem for each element 

is not necessary. For the 4 node quadrilateral, the element frequency can be 

estimated from (Flanagan and Belytschko [12]) 

where 

P = density 

A = area of the four node quadrilateral 

x and LI are the Lame constants 

Ev E 
= ( l + u )  (1-24 and lJ = 'm 

The determination of At in every step involves a sort. Equations (17) 
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and (20) are used to compute the stable time step for each element in the 

mesh. The minimum time step thus found is used in the time integration of the 

equation of motion. 

C* provides reduction operators i.e. operators which read va 

parallel processors and deliver a combined result. Two examples 

operators in C* are: 

< ? =  minimum 

> ? =  max i mum 

ues from all 

of reduction 

Thus to find the smallest element time step within the domain plane-stress- 

quad and assign it to the mono (front end variable) DELT, one would write 

DELT = (< ? = delte) (23) 

The recent innovations in computer architectures have resulted in a 

diverse range of tools designed to enable the programmer to exploit the 

strengths o f  the underlying hardware. These tools include specialized machine 

programming languages such as PARIS (Parallel Instruction Set) for the 

CONNECTION machine or lldialectsl' of standard programming languages such as 

FORTRAN and C i.e. CM FORTRAN and C* for the CONNECTION machine. It is not 

uncommon for programs in computational mechanics to approach several tens of 

thousands lines in length. It is not feasible to "translate" these codes into 

each dialect for every computer being constructed. However, the different 

architectures need to be tested via some standard benchmark. Therefore, the 

approach taken within this study has been to translate the computationally 
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intensive por ion of a FORTRAN program for the transient ana,jsis of continua 

into C* and linking it to a FORTRAN driving program which manages I/O. This 

approach is cognizant of the vast volume of FORTRAN code which has been built 

up over the past 30 years as well as the limitations of FORTRAN which impede 

its use on modern computer architectures. 

A major shortcoming of FORTRAN is its lack of inherent data structures. 

FORTRAN was designed to strictly provide a facility for "formula trans- 

lation". Although data structures can be established within FORTRAN using 

various array interrelationships the process is both cumbersome and error 

prone. 

The C* programming language was chosen since it incorporates a data 

structure which leads to a very natural style of coding in a parallel 

environment. As will be subsequently shown the code written in C* is nearly 

identical to the C code which would be written for a single element problem. 

Thus, parallel programming in the C* programming language consists of parallel 

execution of a single element code. 

The algorithm discussed previously emerged from a study of several 

algorithms on a one dimensional wave propagation problem. Schematic diagrams 

o f  the three algorithms tested on the one dimensional problem are shown in 

Figure 3. In finite element analysis, the most computationally intensive 

portion of the program is the calculation of element internal forces. The 

first algorithm tested performed element internal force calculations on the 

CONNECTION Machine, passed the calculated internal forces to the VAX 8250 

front end where the accelerations were calculated and integrated to yield 

updated displacements which needed to be passed back to the CONNECTION Machine 

for the element internal force calculation of the subsequent time step. A 

small 20 element 150 time step rod problem took 54 secs. (wall clock time). 

This approach suffered from two major shortcomings. First, the power of 
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the CONNECTION machine was not exploited in the integration of the acceler- 

ations. That is, the equations of motion were solved in a serial manner on 

the front end. This accounted for 34 secs. of solution time. Second, the 

communication bandwidth between the front end and the CONNECTION machine is 

very narrow, therefore adding the contribution of element internal forces into 

the global internal force vector stored on the front end accounted for 15 

secs. o f  solution time. 

The second algorithm tested sought to remedy these shortcomings by 

performing all calculations on the CONNECTION machine. A finite element data 

structure was established through a union of two domain types similar to a 

Von Neumann structure. The element internal forces were calculated within the 

element domains while the equations of motion were integrated in the nodal 

domains. This approach suffered from the partitioning of the CONNECTION 

Machine into two parts only one of which was active at any instance of time. 

Its value lies in the light it sheds on router interprocessor communication. 

The same benchmark problem required a solution time of 525 secs. Calculation 

o f  element internal forces required 392 secs. since the values of the 

displacements had to be obtained from the nodal domains. 

The third approach was to establish a finite element data structure 

consisting of a single domain type. A processor within the CONNECTION Machine 

was assigned to each element and its nodes. Thus, the accelerations are 

integrated redundantly. However, the only interprocessor communication 

required is the passing of internal forces from each element of to its 

adjacent neighbors. The time required for the solution of the benchmark 

problem described previously was 30 secs. Upon closer examination of the 

solution time required for each section of the program, it was observed that 

solving the equation of motion required 12 secs. This was caused when a loop 
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index over the number of nodes in the element defaulted to a poly (CONNECTION 

Machine) variable. Thus, this index was stored on the stack of every 

processor and tested individually. The redeclaration o f  this loop index as a 

mono (front end) variable lowered the solution time for the entire benchmark 

problem to 17 secs. 

4. C* PROGRAMMING LANGUAGE 

A two node, elastic rod element is presented to illucidate C* coding on 

the CONNECTION Machine. The rod element was chosen instead o f  the quadri- 

lateral for conciseness and clarity. The differential equation governing the 

motion of an elastic rod under the dynamic application of a load is analogous 

to the initial value - boundary value problem given by eqs. (1) - (5b ) .  These 

matrix-vector equations reduce to the analogous scalar equation for the one 

dimensional case. Each node o f  the 1D rod element has one degree of 

freedom. Therefore, 

u = ux 
I 

X E =  E 
I 

X U - 
E -  

C = E  
I 
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where L is the length of the element. Likewise, equations (15) - (169) reduce 
to scalar equations over the number of nodes in the mesh. 

The C programming language allows a set of related variables to be 

grouped together by declaring them to be members of a structure. The C* 

programming language extends the concept of a structure by allowing functions 

to be associated members. The union of a structure and its associated 

functions is called a domain. An example of a domain and a member is 

presented in Figure 4. The structure for each rod element contains all of the 

material and geometric properties o f  the rod element and the kinematic, mass, 

and force properties of the two adjacent nodes. The first two variables 

within the rod element structure nei and nej are pointers to the two 

neighboring rod elements. That i s ,  the values of nei and nej are addresses 

for the starting memory location of the structures containing the information 

for the two neighboring rod elements. In the function build-fint internal 

force contributions are passed to an element from its two adjacent elements 

through the use of pointers, a standard feature of the C programming 

language. The conditionals test whether or not each end of the rod element 

lies on the boundary of the rod. Rod elements whose end lies on the boundary 

of the rod have a pointer to the null domain and hence receive no internal 

force contribution from a neighboring rod element on that end of the rod. It 

is important to notice that the two neighboring rod elements can be processed 

within any two arbitrary processors within the CONNECTION Machine. The 

programmer employs router communication to pass values of mass and internal 

force to the appropriate processors. The pointers may be either calculated 
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through the examination of the finite element connectivity array, be input in 

the context o f  a neighboring element array NEIGHB, or generated in the case of 

consecutively numbered elements. For the purpose of this study, the NEIGHB 

array was input. Each rod element had two entries in the NEIGHB array 

corresponding to its two neighboring rod elements. Rod elements bordering on 

the boundary of the rod were assigned a value of zero in the corresponding 

entry of the NEIGHB array. 

In dynamic finite element analysis using an explicit time integration, 

mesh numbering is not a critical issue as it becomes when a Newton-based 

implicit time integrator is implemented. While use of router based 

interprocessor communication, permits treatment of completely unstructured 

meshes, it is instructive to examine the gains in speedup possible with NEWS 

based interprocessor communication. NEWS based interprocessor communication 

suffers from the dual drawbacks o f  requiring a rigid element numbering scheme 

and the necessity of specifying a limit on the number of elements along each 

dimension of the mesh at compilation time. However, the implementation o f  

NEWS type interprocessor communication results in a dramatic reduction in 

program execution time. 

The modification o f  the rod domain for the implementation of the NEWS 

communication scheme presented in Figure 5. For the rod element, additional 

floatlng point variables are included as the receiving address for the mass 

and internal force contributions of the two adjacent elements. In addition, 

two "boolean" integer variables facti and factj are included to exclude 

extraneous values o f  internal force and mass from entering into the calcu- 

lation through the ends of the rod. 

Structures analogous to those implemented for the rod problem were 

established for the two dimensional continuum element. In the case o f  router 
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based interprocessor communication, the structure for each plane stress 

continuum element contains all of the material and geometric properties of the 

element, values of stress and strain at the gauss points and the values of the 

kinematic, mass, and force variables at the four adjacent nodes. Eight 

variables within the plane stress quadrilateral continuum element structure 

are pointers to the eight neighboring quadrilateral elements. In the function 

build-fint internal force contributions are passed to an element from its 

eight adjacent neighbors through the use of pointers. These pointers were 

established via the neighboring element array NEIGHB which was input. Each 

plane stress quadrilateral continuum element had eight entries in the NEIGHB 

array corresponding to its eight neighboring quadrilateral elements. Quadri- 

lateral elements bordering on the boundary of the body were assigned a value 

of zero in the corresponding entry of the NEIGHB array. The eight pointers 

and the corresponding eight adjacent elements of an arbitrary element k within 

a 2D mesh of plane stress quadrilateral continuum elements is illustrated in 

Figure 6. 

The mass and internal force contributions from the eight neighboring 

elements of element k are obtained through an eight stage exchange operation 

consisting o f  eight router messages. For example, the internal force 

contribution to nodes 0 and 3 of element k from the element whose address is 

contained by the pointer neleft is obtained through the following commands. 

if (neleft != (domain-plane-stress-quad *) 0) - 

fint [ 3 ]  += neleft -> finte[2] 

fint [O] += neleft -> finte[l] 
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The modification of the quadrilateral domain for the implementation of 

the NEWS communication scheme is analogous to the modifications required for 

the rod domain. For the case of a two dimensional mesh, once NEWS inter- 

processor communication is established through PARIS cal Is, a structured mesh 

of m x n elements where m and n are powers of two specified by the programmer 

is established. The elements are allocated among the processors so that, for 

example, elements in mesh position (1,l) and (2,l) are located in adjacent 

processors. Also elements in mesh positions (l,l), i.e. first row and first 

column, and (1,2) are located in adjacent processors. Thus the NEIGH6 array 

need only be boolean to delineate mesh boundaries. All communication takes 

the form of a simultaneous shift of data along one of the NEWS grid axes. For 

example, the PARIS instructions which are necessary to send the internal force 

contribution for nodes 0 and 3 from the left neighbor are: 

CM-send-to-news-always-lL(&ef intO,&f inte [ 1 J ,O,CM-upward, 32) 

CM-send - to-news-a1 ways-lL(&ef i nt3 ,&f i nte [ 21 ,O,CM-upward, 32) 

The internal force assembly operation takes on a very simple and elegant 

form diagrammed in Figure 7. The mass and internal force contributions from 

the eight neighboring elements of element 5 are obtained through an exchange 

operation consisting of four shifts. 

Staqe 1: Right Shift 

The internal force values for nodes 1 and 2 are sent to temporary 

variables efintO and efint3 respectively to the right neighbor o f  each 

e 1 ement . 
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Stage 2: Left Shift 

The internal force values for nodes 0 and 3 are sent to temporary 

variables efintl and efint2 respectively to the left neighbor of each 

element. 

Update the internal force at each node 

fintO += efintO * factl 
fintl += efintl * factr 
fint2 += efint2 * factr 
fint3 += efint3 * factl 

At this point it is instructive to note that the nternal force contribution 

o f  elements 4 and 6 to element 5 have already been accounted for. Likewise, 

the internal force contribution of elements 7 and 9 to element 8 and the 

internal force contribution of elements 1 and 3 to element 2 have already been 

accounted for. Thus, the "exchange and assembly" of the element force vector 

for element 5 can be completed with two more shifts. 

Stage 3: Downward Shift 

The internal force values for nodes 0 and 1 are sent to temporary 

variables efint3 and efint2 respectively to the bottom neighbor of each 

element. 

Stage 4: Upward Shift 

The internal force values for nodes 2 and 3 are sent to temporary 

variables efintl and efintO respectively to the top neighbor of each 

element . 
Update the internal force at each node 

fintO += efintO * factd 
fintl += efintl * factd 
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cat ion 

call s 

commu n 

which 

fint2 += efint2 * factu 
fint3 += efint3 * factu 

The distinctions between router and NEWS based interprocessor communi- 

are the necessities of establishing a NEWS grid and the use of PARIS 

to control the exchange operation. Router based interprocessor 

cation can be used with unstructured meshes and depends on pointers 

s a concept indigenous to the C programming language. 

5. COMPARISONS OF THE CONNECTION MACHINE VS. THE CRAY 

The issue of obtaining benchmark timings from the CONNECTION Machine is 

one surrounded by quite a bit o f  controversy. Although CPU time is the 

universal measure of system and program performance on scalar as well as 

vector/paral le1 computers, the CONNECTION Machine cannot be re1 iably 

benchmarked in this manner at the current time. Front end CPU time is a 

deceiving statistic since it does not account for time during which the 

CONNECTION Machine is processing instructions while the front end may be idle 

or, for example, working on the compilation of another user's program. 

Although CONNECTION Machine busy time can be measured, this timing does not 

a c c o u n t  for f r o n t  end CPU u s a g e  for t h e  i n p u t / o u t p u t  phase  o f  the program. 

With these considerations in mind, wall clock time was chosen as the benchmark 

timing indicator for measuring CONNECTION Machine performance. Wall clock 

time assures a measurement of an upper bound. 

The following tables attempt to present a comparison between the 

performance of the CONNECTION Machine vs. the performance o f  the CRAY in 

finite element analysis. It should be stressed that the CONNECTION Machine is 

at a disadvantage to the CRAY in at least two respects. First, the times 

reported for the CRAY are CPU times which include none o f  the system overhead 
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reflected in a wall clock time. Second, the runs made on the CONNECTION 

machine include the overhead of first reading in the input data on the front 

end, mesh generation on the front end, and then transferring the nodal and 

element data into the CONNECTION Machine. This was necessary since most 

production finite element codes involve many thousand of lines devoted to 1/0 

which cannot be adapted to the massively parallel architectures of machines 

like the CONNECTION Machine and most finite element meshes are irregular with 

elements of varying sizes which precludes the generation of geometric data for 

each element of the mesh simultaneously by the CONNECTION Machine. 

Nevertheless, the CONNECTION Machine out performed the CRAY by a signifi- 

cant margin (on the order of 10-15 times faster) for very large problems. The 

fact that the CONNECTION Machine is a first generation massively parallel 

computer indicates exciting computational potential for latter generation 

massively parallel computers with faster processors, larger local memory at 

each node, and improved communication hardware. 

CONNECTION Machine Timings 

Elastic Wave Rod Problem - 15000 time steps wall clock times in seconds. 

Number of VAX 8250 Front End SUN 4 Front End 
E 1 ement s Router NEWS NEWS , 

8000 1384. 1116. 235. 

16000 1800. 1463. 293. 

32000 2592. 2213. 620. 

64000 4504. 3946. 2529. 
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CRAY X-MP/14 vs. CONNECTION Machine Benchmark: 

SUN 4 Front End - NEWS Interprocessor Communication 
64000 elements 95000 time steps 3450 secs. 

5.67 x secs/element'time step 
(See P i e  Chart 1.)  

CRAY X-MP/14, fully vectorized FORTRAN code 

2000 element 15000 time steps cft 1.15 compiler 51 secs. CPU 

1.70 x secs/element'time step 

CRAY = - = 3  17 
CONNECTION 5.67 

Projected Wall Clock time for a 256000 element 95000 time step run on a 

64K processor CONNECTION machine I 3450 secs. 

l7 12 CRAY 
CONNECTION = 1.42 Potent i a1 

CONNECTION Machine Timinqs 

1 pt quadrature with hourglass control 

Elastic Beam Bending Problem - 7500 time steps wall clock times in 

seconds 

Number of VAX 8250 Front End SUN 4 Front End 
E 1 ement s Router NEWS NEWS 

8192 4568. 2034. 

16384 6174. 2962. 

563. 

652. 
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CRAY X-MP/14 vs. CONNECTION Machine Benchmark: 

SUN 4 Front End - NEWS Interprocessor Communication 
16384 elements 25000 time steps 1512 secs. 

3.69 x secs/element'time step 
(See Pie Chart 2.) 

CRAY X-MP/14 FORTRAN code 

1000 elements 1000 time steps cft 77 compiler 56. secs. CPU 

56 x secs/element'time step 

Estimated CPU time with vectorization 

9.3 x secs/element*time step 

CRAY - -  9.3 
CONNECTION - 3.7 a '05 

Projected Wall Clock time for a 65536 element 25000 time step run on a 

64K processor CONNECTION machine P 1512 secs. 

CRAY sa 10 CONNECT ION Potent i a1 

6. CONCLUSIONS 

A data management scheme and an associated algorithm for explicit or 

iterative implicit finite element analysis on massively parallel partitioned 

memory SIMO computers, such as the CONNECTION Machine, has been presented.' A 

study of CONNECTION Machine architecture and features o f  the C* programming 

language along with their implications on coding finite element analysis codes 

for use on the CONNECTION Machine has shown that a trade o f f  between 

redundancy o f  calculations and interprocessor communication must be made to 
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attain peak performance. Two benchmark problems were studied to compare the 

performance of the CONNECTION Machine to the CRAY XMP/14. The CONNECTION 

Machine out performed the CRAY for very large problems. The architecture of 

the CONNECTION Machine is well suited to finite element analysis applications 

and the studies of CONNECTION Machine performance indicate exciting compu- 

tational potential for latter generation massively parallel computers with 

faster processors, larger local memory at each node, and improved communi- 

cation hardware. 
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N o d a l  

F I N T  D o m a i n  

Figure 2 a  
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Von Neumann Data Structure 

1 0  
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Figure 2b SIMD Data St ruc ture  
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Calculation of Internal Force on the Connection Machine 

F = m a  

Solution of Equation of Motion on Front End 

2. Establishing a Finite Element Data Structure with Two Domain Types 

Element 
Domain 

Nodal 
Domain FINT 

3.  Establish a Finite Element Data Structure with a Single Domain Type 

1 
0 0 

Figure 3 
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mnle of a domain 

domain r od-elem en t 
{ domain rod-element *nei 

domain rod-element *nej 
int node[NPELE] 
float xlength 
float csarea 
float densty 
float emass 
float ym 
float stress 
float finte 
float delt 
float coord [NPELE] 
float disp[NPELE], vel[NPELE], acc[NPELE] 
float fint[NPELE] 
float fext[NPELE] 
float mass[NPELE] 
int bc[NPELE] Y 1 

MuItiDle instances of a domain via an arrav 

domain rod-element element [MAXEL] 

Y 

9 

Y 

9 

9 

Y 

9 

9 

9 

Y 

9 

Y 

Y 

Y 

9 

9 

FxamDles o f member functions 

rod-element: :calc-finto 
stress = (ym / xlength) * (disp[l] - disp[O]) ; 
finte = stress * area 
fint[O] = - finte 9 

fint[l] = finte Y 1 

{ 
9 

rod-element:: build-finto 
{ if (nej != (domain rod-element *) 0) fint[l] -= nej->finte ; 

if (nei != (domain rod-element *) 0) fint[O] += nei->finte ; >, 

Activation of multiDIe Drocesso rs is achieved through a 
Selection statement 

[domain rod-element]. { calc-finto ; ) 

Figure 4 
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le of a domain 

domain rod-element 
{ int indx 

int index 
int node[NPELE] 
float 
float 
float 
float 
float 
float 
float 
float 
float 

xlength 
csarea 
dens ty 
emass, nei-emass, nej-emass 
Ym 
stress 
finte, nei-finte, nej-finte 
delt 

coord[NPELE] 
float disp[NPELE], vel [NPELE], acc[NPELE] 9 

float fint[NPELE] 
float fext[NPELE] 
float mass [NPELE] 
int bc[NPELE] 
int facti, factj 

Estab1 ishing a CONNECT ION Machine geomet rv 

rod-element e1ement::initialize-element-domain() 

/ *  Select all processors * /  
{ 

/ *  All processors get their NEWS coordinate * /  

1 

CM-set-context() 

CM-my-news-coordinate- 1 L(&index,0,32) 

? 

9 

9 

9 

9 1 ;  

Example of NEWS communication 

rod-element:: build-finto 
{ 
/ *  Each element receives the values of the element internal 

forces from its neightbors * /  
CM~send~to~news~always~lL(&nej~finte,&finte~O,CM~downward,32) ; 
CM-send-to-news-alway s- 1 L(&nei-fin te,&finte,O,CM_upward,32) ; 

fint[O] += nei-finte * facti 
fint[l] -= nej-finte * factj 

; 
; 

1 

Figure 5 
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